
What  really  happend on Mars ? 

By now most of you have  read  Mike’s (mbj@microsoft.com) summary of Dave 
Wilner’s  comments  given  at  the IEEE Real-Time  Systems  Symposium. I don’t 
know Mike and I didn’t attend  the symposium (though I really wish I had now) 
and I have not talked to Dave  Wilner  since  before  the  talk.  However, I did lead 
the  software  team for the  Mars  Pathfinder  spacecraft. So, instead of trying to 
find out what  was  said I will just tell you what  happened. You can  make your 
own judgments. 

I sent this message out to everyone who was a recipient of Mike’s  original  that I 
had  an  email address for. Please  pass it on to anyone you sent  the first one to. 
Mike, I hope you will post this wherever you posted  the  original. 

Since I want to make  sure  the  problem is clearly  understood I need to step 
through each of the areas which contributed to the  problem. 

THE HARDWARE 

The  simplified  view of the  Mars  Pathfinder  hardware  architecture looks like this. 
A single CPU controls  the  spacecraft. It resides on a VME bus which  also 
contains  interface  cards for the  radio,  the camera, and  an  interface to a 1553 
bus. The 1553 bus connects to  two places : The  “cruise  stage”  part of the 
spacecraft  and  the  “lander”  part of the  spacecraft.  The  hardware on the  cruise 
part of the  spacecraft  controls  thrusters,  valves, a s u n  sensor, and a  star 
scanner. The  hardware on the  lander  part  provides  an  interface to 
accelerometers,  a  radar  altimeter,  and  an  instrument for meteorological  science 
known as the  ASVMET.  The  hardware which we  used to interface to the 1553 
bus (at both ends) was  inherited from the  Cassini  spacecraft. This hardware 
came with a specific  paradigm for its usage : the  software will schedule  activity 
at  an 8 Hz rate. This **feature**  dictated  the  architecture of the  software which 
controls both the 1553 bus and  the  devices  attached to it. 

THE SOFTWARE ARCHITECTURE 

The  software to control the 1553 bus and  the  attached  instruments  was 
implemented as two tasks. The first task  controlled  the  setup of transactions on 
the 1553 bus (called  the bus scheduler or bc-sched  task)  and  the  second  task 
handled  the  collection of the transaction  results  i.e.  the  data.  The  second  task is 
referred to as the  bc-dist (for distribution) task. A typical  timeline for the bus 
activity for a single  cycle is shown below. It is not to scale. This cycle  was 
constantly  repeated. 



I<************ I I******** I I**>l 

I C -  bc-dist  active - > I  bc-sched  active 
I <  -bus active - > I  I <-> I 

""I """"""" I """"""""" I """"" 1"-1"-1""" - 
t l  t2 t3 t4 t5 tl 

The *** are  periods  when tasks other  than  the ones listed  are  executing.  Yes, 
there is some  idle  time. 

tl  - bus hardware starts via  hardware control on the 8 Hz boundary.  The 
transactions for the this cycle  had  been set up by the  previous  execution of the 
bc-sched  task. 
t2 - 1553  traffic is complete  and  the  bc-dist  task is awakened. 
t3 - bc-dist task  has  completed  all of the  data distribution 
t4 - bc-sched  task is awakened to setup  transactions for the  next  cycle 
t5 - bc-sched  activity is complete 

The  bc-sched  and  bc-dist tasks check  each  cycle to be sure  that  the  other  had 
completed its execution.  The  bc-sched  task is the  highest priority task in the 
system  (except for the vxWorks "tExec" task). The bc-dist is third highest (a  task 
controlling  the  entry  and  landing is second). All of the tasks which  perform  other 
spacecraft  functions  are  lower.  Science functions, such as imaging,  image 
compression,  and  the ASVMET task  are still lower. 

Data is collected from devices  connected to the  1553 bus only when  they  are 
powered. Most of the  tasks in the  system that access the  information  collected 
over  the  1553 do so via a double  buffered  shared  memory  mechanism into which 
the bc-dist task  places  the  latest  data.  The  exception to this is the  ASVMET  task 
which is delivered its information  via  an  interprocess  communication  mechanism 
(IPC). The IPC mechanism uses the vxWorks pipe()  facility.  Tasks  wait on one 
or more IPC "queues" for messages to arrive.  Tasks  use  the  select()  mechanism 
to wait for message  arrival.  Multiple  queues are used  when both high and  lower 
priority messages  are required. Most of the IPC traffic in the  system is not for 
the  delivery of real-time data. However,  again,  the  exception to this is the  use of 
the IPC mechanism with the  ASVMET task.  The  cause of the reset on Mars  was 
in the  use  and  configuration of the IPC mechanism. 

THE FAILURE 

The  failure  was  identified by the  spacecraft as a failure of the bc-dist task to 
complete its execution  before  the  bc-sched  task started. The  reaction to this by 
the  spacecraft  was to reset  the  computer. This reset  reinitializes  all of the 



hardware  and  software. It also terminates  the  execution of the  current  ground 
commanded activities. No science or engineering  data is lost that  has  already 
been collected (the  data in  RAM is recovered so long as power is not  lost). 
However,  the  remainder of the activities for that  day  were  not  accomplished until 
the  next  day. 

The failure turned  out  to be a case of priority inversion  (how  we  discovered  this 
and how we  fixed it are covered  later).  The  higher priority bc-dist task  was 
blocked by the  much  lower priority ASVMET task that  was holding a shared 
resource.  The ASVMET task had acquired this resource and  then been 
preempted by several of the  medium priority tasks.  When  the bc-sched task 
was  activated,  to  setup  the  transactions for the  next 1553 bus cycle, it detected 
that  the bc-dist task  had  not  completed its execution.  The resource that  caused 
this problem was  a mutual  exclusion  semaphore  used within the select() 
mechanism  to control access to  the list of file descriptors  that  the  select() 
mechanism  was to wait on. 

The  select  mechanism  creates a mutual  exclusion  semaphore  to  protect  the 
“wait list” of file descriptors for those  devices which support  select.  The  vxWorks 
pipe()  mechanism is such a device and the IPC mechanism  we used is based on 
using  pipes.  The 
ASVMET task  had  called  select, which had  called  pipeloctl(),  which  had  called 
selNodeAdd(), which was  in the  process of giving the  mutex  semaphore.  The 
ASVMET task  was  preempted and semGive()  was not completed.  Several 
medium priority tasks ran until the bc-dist task  was  activated.  The bc-dist task 
attempted  to  send  the  newest ASVMET data via the  IPC  mechanism which 
called pipewrite().  pipewrite() blocked, taking  the  mutex  semaphore. More of 
the  medium priority tasks  ran, still not  allowing the ASVMET task  to  run, until the 
bc-sched task  was  awakened. At that point, the bc-sched task determined  that 
the bc-dist task  had not completed its cycle (a hard  deadline in the  system)  and 
declared the error that initiated the  reset. 

HOW WE  FOUND IT 

The  software  that flies on Mars Pathfinder has several  debug  features within it 
that are used in the lab but are not used on  the flight spacecraft  (not used 
because s o m e  of them  produce  more information than we  can send back to 
Earth).  These  features  were  not “fortuitously” left enabled but remain in t he  
software by design.  We  strongly  believe in the  “test  what  you fly and fly what 
you  test”  philosophy. 

One of these  tools is a tracehog facility which was  originally developed  to find a 
bug in a n  early  version of the vxWorks port  (Wind  River ported  vxWorks to the 
RS6000 processor for u s  for this  mission).  This  tracehog facility was  built  by 
David Cummings  who  was one of the  software  engineers on the  task. Lisa 
Stanley, of Wind  River,  took  this facility and  instrumented the  pipe  services, 



msgQ services, interrupt  handling,  select services, and the  tExec  task.  The 
facility initializes at  startup and continues  to collect data  (in ring buffers) until told 
to  stop.  The facility produces a voluminous  dump of information when  asked. 

After the  problem occurred on Mars we did run t he   s ame   s e t  of activities over 
and  over  again in the lab. The bc-sched was  already coded so as to  stop  the 
tracehog collection and  dump  the  data  (even  though  we  knew  we could not  get 
the  dump in flight) for this  error. So, when  we  went into the lab to  test it we  did 
not  have  to  change  the  software. 

In less that 18 hours  we  were able to cause the problem  to  occur.  Once  we  were 
able to  reproduce  the failure the priority inversion  problem was  obvious. 

HOW  WAS  THE  PROBLEM  CORRECTED 

Once we  understood  the  problem the fix appeared  obvious : change the creation 
flags for the  semaphore so as to enable the priority inheritance.  The Wind  River 
folks, for many of their services, supply  global  configuration  variables for 
parameters such as the  “options”  parameter for the  semMCreate used by the 
select service (although  this is not  documented and those  who  do not have 
vxWorks source code or have  not  studied  the source code might be unaware of 
this  feature).  However, the fix is not so obvious for several reasons : 

1) The code for this is in the  selectlib() and is common for all device creations. 
When  you  change  this  global  variable all of the select semaphores  created  after 
that point will be created with the  new  options.  There  was no easy  way in our 
initialization logic to only modify the  semaphore associated with the  pipe used for 
bc-dist task  to ASVMET task  communications. 

2) I f  we  make  this  change, and it is applied on a global basis, how will this 
change  the  behavior of the  rest of the  system ? 

3) The priority inversion  option was  deliberately left out by  Wind  River in the 
default  selectlib() service for optimum  performance. How will performance 
degrade if we  turn  the priority inversion  on ? 

4) Was  there   some intrinsic behavior of the  select  mechanism itself that would 
change if the  priority inversion was  enabled ? 

We did end  up modifying the global  variable  to include the  priority inversion. 
This  corrected  the  problem.  We  asked Wind  River to  analyze  the  potential 
impacts for (3) and (4). They concluded that t he  performance  impact  would be 
minimal and  that  the  behavior of select() would not change so long as there  was 
always only one  task waiting for any particular file descriptor.  This is true in our 
system. I believe  that t he  debate  at  Wind  River still continues on whether  the 
priority inversion  option  should be on as the  default.  For (1) and (2) the  change 



did alter the  characteristics of all of the select semaphores.   We concluded, both 
by analysis and test,  that  there  was  no  adverse  behavior.  We  tested the  system 
extensively  before  we  changed  the  software  on  the  spacecraft. 

HOW WE  CHANGED  THE  SOFTWARE ON THE  SPACECRAFT 

No, w e  did not use the  vxWorks shell to change the software  (although  the shell 
is usable on  the  spacecraft).  The  process of “patching”  the  software  on the  
spacecraft is a specialized  process. It involves  sending  the differences between 
what  you  have onboard and what  you  want (and have  on  Earth)  to the  
spacecraft.  Custom  software on the  spacecraft (with a whole bunch of 
validation)  modifies the  onboard  copy. If you  want  more info you can send   me 
email. 

WHY DIDN’T WE CATCH IT BEFORE LAUNCH ? 

The problem  would only manifest itself when ASVMET data  was  being collected 
and  intermediate  tasks  were heavily loaded. Our before launch testing w a s  
limited to  the  “best case” high data  rates and science activities. The  fact  that 
data rates from the surface were  higher  than  anticipated and the  amount of 
science activities  proportionally greater  served  to  aggravate  the  problem.  We did 
not expect nor test t he  “better  than  we could have  ever  imagined” case. 

HUMAN NATURE, DEADLINE PRESSURES 

We did see the  problem before landing  but could not get it to  repeat  when  we 
tried to  track it down. It was  not  forgotten nor w a s  it deemed unimportant. Yes, 
we  were  concentrating heavily on the  entry and landing  software. Yes, we 
considered this problem  lower priority. Yes, we would have liked to  have 
everything  perfect before landing.  However, I don’t see any  problem  here other 
than w e  ran  out of time to get  the  lower priority issues completed. 

We did have one other thing on our side; we  knew  how  robust our system  was 
because that is the  way  we  designed it. 

We  knew  that if this  problem occurred w e  would reset. W e  built in mechanisms 
to  recover  the  current activity so that  there would be no interruptions in the 
science data  (although  this  wasn’t used until later in the landed mission).  We 
built in the ability (and tested it) to g o  through multiple resets while we  were 
going  through  the Martian atmosphere.  We  designed the  software to recover 
from radiation induced errors in the  memory or the  processor.  The  spacecraft 
would have  even  done a 60 day  mission on its own,  including  deploying  the 
rover, if the  radio receiver had broken  when  we landed. There are a large 
number of safeguards in the  system  to ensure robust,  continued  operation in the 
event of a failure of this  type.  These  safeguards  allowed u s  to  designate 
problems of this  nature as lower priority. 



We had our priorities  right. 

ANALYSIS AND LESSONS 

Did w e  (the JPL  team)  make an error in assuming  how  the  select/pipe 
mechanism would  work ? Yes, probably. But there  was  no conscious decision 
to  not  have the  priority inversion enabled. We just  missed it. There are several 
other places in the flight software  where  similar  protection is required for critical 
data structures and the  semaphores do have priority inversion  protection. A 
good lesson when  you fly COTS stuff - make sure you  know  how it works. 

Mike is quite  correct in saying  that  we could not  have figured  this  out  **ever** if 
we did not  have  the tools to  give u s  the insight. We built many of the  tools into 
the  software for exactly  this  type of problem.  We  always  planned to leave  them 
in. In fact, the shell (and the  stdout  stream)  were  very useful the  entire  mission. 
I f  you  want  more detail send me a note. 

SETTING  THE  RECORD  STRAIGHT 

First, I want  to  make sure that  everyone  understands how I feel in regard  to Wind 
River. These folks did a fantastic job for us .  They  were  enthusiastic and 
supported u s  when  we  came  to  them and asked them to do an affordable port of 
vxworks.  They  delivered the alpha  version in 3 months.  When  we  had a 
problem  they  put s o m e  of the brightest  engineers I have  ever  worked with on the 
problem. Our communication with them  was  fantastic. I f  they had not done such 
a professional job the Mars Pathfinder  mission  would  not  have  been  the success 
that it is. 

Second,  Dave Wilner did talk  to  me  about  this  problem before he   gave  his talk. I 
could not find my  notes  where I had detailed  the  description of the problem. So, 
I winged it and I sure did get it wrong.  Sorry  Dave. 

ACKNOWLEDGMENTS 

First, thanks  to Mike for writing a very nice description of the talk. I think I have 
had probably 400 people send me  copies. You gave  me  the  push  to write the 
part of the Mars Pathfinder  End-of-Mission  report  that I had been  procrastinating 
doing. 

A special  thanks to Steve  Stolper for helping me do this. 

The  biggest  thanks should g o  to the  software  team  that I had the privilege of 
leading and whose  expertise  allowed u s  to succeed : 

Pam Yoshioka 



Dave Cummings 
Don Meyer 
Karl Schneider 
Greg  Welz 
Rick Achatz 
Kim Gostelow 
Dave  Smyth 
Steve  Stolper 

Also , 

Miguel  San  Martin 
Sam  Sirlin 
Brian  Lazara  (WRS) 
Mike  Deliman  (WRS) 
Lisa  Stanley  (WRS) """"""""""_ 
Glenn  Reeves 
Mars Pathfinder Flight Software  Cognizant  Engineer 
glenn.e.reeves@jpl.nasa.gov 

mailto:glenn.e.reeves@jpl.nasa.gov

